鲁翠媛讲师

日期: 2024-09-04

中国·金沙(威尼斯)欢乐娱人城 - Royal VIP Club

网站个人信息

鲁翠媛

中国

博士

所学专业

机械工程

毕业院校

University of Cincinnati

讲师

职称类别

中级

导师类别

电子邮件

lucuiyuan@ncu.edu.cn

所在单位

金沙威尼斯欢乐娱人城

个人信息

鲁翠媛,博士,赣鄱俊才支持计划-高层次和急需紧缺海外人才项目获得者。主持江西省自然科学基金(青年基金)1项。主要开展选区激光熔化质量控制与优化的研究,在相关领域期刊Virtual and Physical PrototypingRapid Prototyping JournalJournal of Cleaner ProductionThe International Journal of Advanced Manufacturing Technology发表了多篇SCI文章。

教育经历

201508-202204University of Cincinnati(美国辛辛那提大学),机械工程,博士研究生

工作履历

201701-202012P&G Sponsored University of Cincinnati Simulation Center(宝洁公司合作赞助的美国辛辛那提大学仿真中心),助理研究员

201201-201208Bobcat Company(山猫公司),制造工程实习生

科研项目

江西省自然科学基金:增材制造IN718合金孔隙和织构的多工艺参数影响行为及数据驱动预测

科研成果

代表性论文:

(1) Lu, Cuiyuan, Xiaodong Jia, Jay Lee, and Jing Shi. “Knowledge Transfer Using Bayesian Learning for Predicting the Process-Property Relationship of Inconel Alloys Obtained by Laser Powder Bed Fusion.” Virtual and Physical Prototyping 17, no. 4 (2022): 787–805. doi:10.1080/17452759.2022.2068447.

(2) Lu, Cuiyuan, and Jing Shi. "Simultaneous consideration of relative density, energy consumption, and build time for selective laser melting of Inconel 718: A multi-objective optimization study on process parameter selection." Journal of Cleaner Production 369 (2022): 133284. doi.org/10.1016/j.jclepro.2022.133284

(3) Lu, Cuiyuan, and Jing Shi. "Relative density prediction of additively manufactured Inconel 718: A study on genetic algorithm optimized neural network models." Rapid Prototyping Journal 28, no. 8 (2022): 1425-1436. doi.org/10.1108/RPJ-09-2021-0249

(4) Lu, Cuiyuan, and Jing Shi. "Relative density and surface roughness prediction for Inconel 718 by selective laser melting: central composite design and multi-objective optimization." The International Journal of Advanced Manufacturing Technology (2022): 1-19. doi.org/10.1007/s00170-021-08388-2

(5) Lu, Cuiyuan, Jing Shi, and Varad Maitra. "Modelling and process optimization for relative density of Ti6Al4V produced by selective laser melting: a data-driven study." The International Journal of Advanced Manufacturing Technology 121, no. 3 (2022): 1973-1988. doi.org/10.1007/s00170-022-09453-0